12 research outputs found

    Time-resolved gas-phase kinetic and quantum chemical studies of the reaction of silylene with oxygen

    Get PDF
    Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with O-2. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 297-600 K. The second order rate constants at 10 Torr were fitted to the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-11.08 +/- 0.04) + (1.57 +/- 0.32 kJ mol(-1))/RT ln10 The decrease in rate constant values with increasing temperature, although systematic is very small. The rate constants showed slight increases in value with pressure at each temperature, but this was scarcely beyond experimental uncertainty. From estimates of Lennard-Jones collision rates, this reaction is occurring at ca. 1 in 20 collisions, almost independent of pressure and temperature. Ab initio calculations at the G3 level backed further by multi-configurational (MC) SCF calculations, augmented by second order perturbation theory (MRMP2), support a mechanism in which the initial adduct, H2SiOO, formed in the triplet state (T), undergoes intersystem crossing to the more stable singlet state (S) prior to further low energy isomerisation processes leading, via a sequence of steps, ultimately to dissociation products of which the lowest energy pair are H2O + SiO. The decomposition of the intermediate cyclo-siladioxirane, via O-O bond fission, plays an important role in the overall process. The bottleneck for the overall process appears to be the T -> S process in H2SiOO. This process has a small spin orbit coupling matrix element, consistent with an estimate of its rate constant of 1 x 10(9) s(-1) obtained with the aid of RRKM theory. This interpretation preserves the idea that, as in its reactions in general, SiH2 initially reacts at the encounter rate with O-2. The low values for the secondary reaction barriers on the potential energy surface account for the lack of an observed pressure dependence. Some comparisons are drawn with the reactions of CH2 + O-2 and SiCl2 + O-2

    Reaction of germylene with sulfur dioxide: Gas-phase kinetic and theoretical studies

    No full text
    © 2014 American Chemical Society. Time-resolved studies of germylene, GeH2, generated by laser flash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene at 193 nm, have been carried out to obtain rate constants for its bimolecular reaction with SO2. The reaction was studied in the gas phase, mainly at a total pressure of 10 Torr (in SF6 bath gas) at five temperatures in the range 295-553 K. Pressure variation measurements over the range 1-100 Torr (SF6) at 295, 408, and 553 K revealed no pressure dependence. The second-order rate constants at 10 Torr (SF6 bath gas) fit the Arrhenius equation log(k/cm3 molecule-1 s-1) = (-11.01 ± 0.09) + (4.62 ± 0.65 kJ mol-1)/RT ln 10, where the uncertainties are single standard deviations. The collisional efficiency is 19% at 298 K, and in kinetic terms the reaction resembles that of SiH2 with SO2 quite closely. Quantum chemical calculations at the B3LYP/aug-cc-pvQZ level suggest a mechanism occurring via the initial addition of GeH2 to one O atom of SO2 to form H2GeOSO which, via a 1,3-H shift followed by a cyclization, leads to a four-membered-ring species, cyclo-HGeO2SH(cis)-. A low-energy H2 elimination results in the formation of cyclo-GeO2S, a hitherto unknown compound. A number of other species on the enthalpy surface have been identified, including the novel Ge(OH)2⋯S, a cyclic five-membered ring comprising an S atom stabilized by dihydroxygermylene. However, none of these other molecules seem to be involved as intermediates in this reaction, either because barriers to their formation or rearrangement are too high or because their enthalpies are insufficiently negative for them to be collisionally stabilized under experimental conditions. The reaction is compared and contrasted with that of SiH2 + SO2.Peer Reviewe

    Investigation of the prototype silylene reaction, SiH2+H2O(and D2O): time-resolved gas-phase kinetic studies, isotope effects, RRKM calculations, and quantum chemical calculations of the reaction energy surface

    No full text
    Time-resolved kinetic studies of the reaction of silylene, SiH2, with H2O and with D2O have been carried out in the gas phase at 296 and at 339 K, using laser flash photolysis to generate and monitor SiH2. The reaction was studied over the pressure range 10-200 Torr with SF6 as bath gas. The second-order rate constants obtained were pressure dependent, indicating that the reaction is a third-body assisted association process. Rate constants at 339 K were about half those at 296 K. Isotope effects, k(H)/k(D), were small averaging 1.076 0.080, suggesting no involvement of H- (or D-) atom transfer in the rate determining step. RRKM modeling was undertaken based on a transition state appropriate to formation of the expected zwitterionic donoracceptor complex, H2Si...OH2. Because the reaction is close to the low pressure (third order) region, it is difficult to be definitive about the activated complex structure. Various structures were tried, both with and without the incorporation of rotational modes, leading to values for the high-pressure limiting (i.e., true secondorder) rate constant in the range 9.5 x 10(-11) to 5 x 10(-10) cm(3) molecule' s(-1). The RRKM modeling and mechanistic interpretation is supported by ab initio quantum calculations carried out at the G2 and G3 levels. The results are compared and contrasted with the previous studies

    Time-resolved gas-phase kinetic and quantum chemical studies of reactions of silylene with chlorine-containing species. 2. CH3Cl

    No full text
    Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of both silacyclopent-3-ene and phenylsilane, have been carried out to obtain second-order rate constants for its reaction with CH3Cl. The reaction was studied in the gas phase at six temperatures in the range 294-606 K. The second-order rate constants gave a curved Arrhenius plot with a minimum value at T approximate to 370 K. The reaction showed no pressure dependence in the presence of up to 100 Torr SF6. The rate constants, however, showed a weak dependence on laser pulse energy. This suggests an interpretation requiring more than one contributing reaction pathway to SiH2 removal. Apart from a direct reaction of SiH2 with CH3Cl, reaction of SiH2 with CH3 (formed by photodissociation of CH3Cl) seems probable, with contributions of up to 30% to the rates. Ab initio calculations (G3 level) show that the initial step of reaction of SiH2 with CH3Cl is formation of a zwitterionic complex (ylid), but a high-energy barrier rules out the subsequent insertion step. On the other hand, the Cl-abstraction reaction leading to CH3 + ClSiH2 has a low barrier, and therefore, this seems the most likely candidate for the main reaction pathway of SiH2 with CH3Cl. RRKM calculations on the abstraction pathway show that this process alone cannot account for the observed temperature dependence of the rate constants. The data are discussed in light of studies of other silylene reactions with haloalkanes

    Reactions of silylene with unreactive molecules. 2. nitrogen: gas-phase kinetic and theoretical studies

    No full text
    Time-resolved studies of the reaction of silylene, SiH2, with N-2 have been attempted at 296, 417, and 484 K, using laser flash photolysis to generate and monitor SiH2. No conclusive evidence for reaction could be found even with pressures of N-2 of 500 Torr. This enables us to set upper limits of ca. 3 x 10(-15) cm(3) molecule(-1) s(-1) for the second-order rate constants. A lower limit for the activation energy, E-a, of ca. 47 kJ mol(-1) is also derived. Ab initio calculations at the G3 level indicate that the only SiH2N2 species of lower energy than the separated reactants is the H2Si...N-2 donor-acceptor (ylid) species with a relative enthalpy of -26 kJ mol(-1), insufficient for observation of reaction under the experimental conditions. Ten bound species on the SiH2N2 surface were found and their energies calculated as well as those of the potential dissociation products: HSiN + NH((3)Sigma(-)) and HNSi + NH((3)Sigma(-)). Additionally two of the transition states involving cyclic-SiH2N2 (siladiazirine) were explored. It appears that siladiazirine is neither thermodynamically nor kinetically stable. The findings indicate that Si-N-d bonds (where N-d is double-bonded nitrogen) are not particularly strong. An unexpected cyclic intermediate was found in the isomerization of silaisocyanamide to silacyanamide

    Time-resolved gas-phase kinetic and quantum chemical studies of reactions of silylene with chlorine-containing species. 1. HCl

    No full text
    Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with HCL The reaction was studied in the gas phase at 10 Torr total pressure in SF6 bath gas, at five temperatures in the range of 296-611 K. The second-order rate constants fitted the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-11.51 +/- 0.06) + (1.92 +/- 0.47 kJ mol(-1))/RTIn10 Experiments at other pressures showed that these rate constants were unaffected by pressure in the range of 10-100 Torr, but showed small decreases in value of no more than 20% ( +/- 10%) at I Toff, at both the highest and lowest temperatures. The data are consistent with formation of an initial weakly bound donor-acceptor complex, which reacts by two parallel pathways. The first is by chlorine-to-silicon H-shift to make vibrationally excited chlorosilane, SiH3Cl*, which yields HSiCl by H-2 elimination from silicon. In the second pathway, the complex proceeds via H-2 elimination (4-center process) to make chlorosilylene, HSiCl, directly. This interpretation is supported by ab initio quantum calculations carried out at the G3 level which reveal the direct H-2 elimination route for the first time. RRKM modeling predicts the approximate magnitude of the pressure effect but is unable to determine the proportions of each pathway. The experimental data agree with the only previous measurements at room temperature. Comparisons with other reactions of SiH2 are also drawn

    Reaction of silylene with sulfur dioxide: Some gas-phase kinetic and theoretical studies

    No full text
    13 pags, 8 figs, 9 tabs. -- Supplementary Information is available at the Publisher's webTime-resolved kinetic studies of the reaction of silylene, SiH2, with SO2 have been carried out in the gas phase over the temperature range 297-609 K, using laser flash photolysis to generate and monitor SiH 2. The second order rate coefficients at 1.3 kPa (SF6 bath gas) fitted the Arrhenius equation: log(k/cm3 molecule-1 s-1) = (-10.10 ± 0.06) + (3.46 ± 0.45 kJ mol -1)/RTln10 where the uncertainties are single standard deviations. The collisional efficiency is 71% at 298 K, and in kinetic terms the reaction most resembles those of SiH2 with CH3CHO and (CH 3)2CO. Quantum chemical calculations at the G3 level suggest a mechanism occurring via addition of SiH2 to one of the SO double bonds leading to formation of the three-membered ring, thione-siloxirane which has a low energy barrier to ring expansion to yield the four-membered ring, 3-thia-2,4-dioxasiletane, the lowest energy adduct found on the potential energy (PE) surface. RRKM calculations, however, show that, if formed, this molecule would only be partially stabilised under the reaction conditions and the rate coefficients would be pressure dependent, in contrast with experimental findings. The G3 calculations reveal the complexity of possible intermediates and end products and taken together with the RRKM calculations indicate the most likely end products to be H2SiO + SO (3Σ -). The reaction is compared and contrasted with that of SiH 2 + CO2. This journal is © the Owner Societies 2013.R.B. thanks the Ministerio de Economia y Competitividad for support under Project CTQ2010-16402 and Royal Society of Chemistry for a journals grant. N.G. thanks Dow Corning for the financial support of a studentship

    The addition reaction between silylene and ethyne: further isotope studies, pressure dependence studies, and quantum chemical calculations

    No full text
    Time-resolved kinetic studies of the reaction of dideutero-silylene, SiD2, generated by laser flash photolysis of phenylsilane-d(3), have been carried out to obtain rate constants for its bimolecular reaction with C2H2. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 297-600 K. The second-order rate constants obtained by extrapolation to the high-pressure limits at each temperature fitted the Arrhenius equation log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.05 +/- 0.05) + (3.43 +/- 0.36 kJ mol(-1))/RT ln 10. The rate constants were used to obtain a comprehensive set of isotope effects by comparison with earlier obtained rate constants for the reactions of SiH2 with C2H2 and C2D2. Additionally, pressure-dependent rate constants for the reaction of SiH2 with C2H2 in the presence of He (1-100 Tort) were obtained at 300, 399, and 613 K. Quantum chemical (ab initio) calculations of the SiC2H4 reaction system at the G3 level support the initial formation of silirene, which rapidly isomerizes to ethynylsilane as the major pathway. Reversible formation of vinylsilylene is also an important process. The calculations also indicate the involvement of several other intermediates, not previously suggested in the mechanism. RRKM calculations are in semiquantitative agreement with the pressure dependences and isotope effects suggested by the ab initio calculations, but residual discrepancies suggest the possible involvement of the minor reaction channel, SiH2 + C2H2 - SWPO + C2H4. The results are compared and contrasted with previous studies of this reaction system

    A mechanistic study of cyclic siloxane pyrolyses at low pressures

    No full text
    Matrix isolation IR spectroscopy has been used to study the vacuum pyrolysis of hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4) and decamethyl cyclopentasiloxane (D5), and the results interpreted in the context of various kinetic models. In particular, it is shown that the significant pyrolysis products - which include CH3, CH4, C2H2, C2H4, C2H6 and SiO - may be satisfactorily accounted for by radical reactions involving dimethylsiloxane (D1), and estimates are made of the various chain lengths for the proposed reactions based on a range of ambient conditions
    corecore